Back to Posts
Can you trace every single request end-to-end in your system right now?

Can you trace every single request end-to-end in your system right now?

I had a really interesting conversation with a friend this week that left me thinking about something we all struggle with in complex systems: observability.

Most teams still rely on logs, counters, and P95 chartsโ€ฆ and hope for the best.

But in modern, distributed architectures, that simply isnโ€™t enough.

To illustrate, think about something as common as an email processing pipeline, and this applies far beyond email:

๐˜Š๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜น ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ๐˜ง๐˜ญ๐˜ฐ๐˜ธ๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ฃ๐˜ญ๐˜ข๐˜ค๐˜ฌ ๐˜ฃ๐˜ฐ๐˜น๐˜ฆ๐˜ด ๐˜ธ๐˜ช๐˜ต๐˜ฉ๐˜ฐ๐˜ถ๐˜ต ๐˜ณ๐˜ฆ๐˜ข๐˜ญ ๐˜ต๐˜ณ๐˜ข๐˜ค๐˜ช๐˜ฏ๐˜จ
ย ย โ€ข an ingestion layer
ย ย โ€ข parsers and normalizers
ย ย โ€ข multiple ML or threat-detection services
ย ย โ€ข a rules or compliance engine
ย ย โ€ข delivery or downstream queue
ย ย โ€ข logging + analytics

Thatโ€™s 5-10+ microservices, all with their own logs, metrics, and failure modes.

๐˜š๐˜ฐ ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ด๐˜ฐ๐˜ฎ๐˜ฆ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜จ ๐˜จ๐˜ฐ๐˜ฆ๐˜ด ๐˜ธ๐˜ณ๐˜ฐ๐˜ฏ๐˜จ, ๐˜ญ๐˜ฆ๐˜ข๐˜ฅ๐˜ฆ๐˜ณ๐˜ด ๐˜ฐ๐˜ง๐˜ต๐˜ฆ๐˜ฏ ๐˜ฉ๐˜ฆ๐˜ข๐˜ณ ๐˜ฒ๐˜ถ๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ญ๐˜ช๐˜ฌ๐˜ฆ:
โ€œWhy did this request take 3 seconds instead of 300 ms?โ€
โ€œWhich service slowed it down?โ€
โ€œDid it get stuck? Did it fail quietly? Where?โ€

๐˜›๐˜ณ๐˜ข๐˜ฅ๐˜ช๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ฎ๐˜ฐ๐˜ฏ๐˜ช๐˜ต๐˜ฐ๐˜ณ๐˜ช๐˜ฏ๐˜จ ๐˜ฐ๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ด ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ฉ๐˜ช๐˜จ๐˜ฉ-๐˜ญ๐˜ฆ๐˜ท๐˜ฆ๐˜ญ ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ข๐˜ญ๐˜ด:
ย ย โ€ข P95 latency
ย ย โ€ข Error counts
ย ย โ€ข CPU/Memory graphs

Helpful, but not enough to understand what happened to one specific request as it travels across the system.

๐—˜๐—ป๐˜๐—ฒ๐—ฟ ๐—ข๐—ฝ๐—ฒ๐—ป๐—ง๐—ฒ๐—น๐—ฒ๐—บ๐—ฒ๐˜๐—ฟ๐˜†, ๐˜๐—ต๐—ฒ ๐—บ๐—ถ๐˜€๐˜€๐—ถ๐—ป๐—ด ๐—น๐—ถ๐—ป๐—ธ
During that conversation with my friend, we kept coming back to one insight: Engineering teams spend huge amounts of time reinventing ad-hoc tracing just to answer basic questions.

๐—ข๐—ฝ๐—ฒ๐—ป๐—ง๐—ฒ๐—น๐—ฒ๐—บ๐—ฒ๐˜๐—ฟ๐˜† (๐—ข๐—ง๐—˜๐—Ÿ) ๐—ฒ๐—น๐—ถ๐—บ๐—ถ๐—ป๐—ฎ๐˜๐—ฒ๐˜€ ๐—ฎ๐—น๐—น ๐—ผ๐—ณ ๐˜๐—ต๐—ฎ๐˜.

โœ” End-to-end distributed tracing
A single Trace ID follows a request across every microservice, queue, and function.

โœ” Automatic instrumentation
It works across languages (Go, Python, Node.js, Javaโ€ฆ) and supports HTTP, gRPC, message brokers, DB calls, cloud services, and more.

โœ” Built-in correlation
Traces, logs, and metrics are tied together automatically.
You no longer have to manually match timestamps or grep logs at 3 AM.

โœ” Vendor-neutral observability
Send your telemetry anywhere: Grafana Tempo, Jaeger, Datadog, New Relic, Elastic, etc.

๐Ÿ’ก ๐˜ž๐˜ฉ๐˜บ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ฎ๐˜ข๐˜ต๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ช๐˜ฏ ๐˜ข๐˜ฏ๐˜บ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜น ๐˜ข๐˜ณ๐˜ค๐˜ฉ๐˜ช๐˜ต๐˜ฆ๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ

Whether youโ€™re building:
ย ย โ€ข an email ingestion/scanning pipeline
ย ย โ€ข a payment processing system
ย ย โ€ข a multi-service API backend
ย ย โ€ข a real-time data processing platform

โ€ฆyou need visibility into every hop of every request.

Without it, you get blind spots, long MTTR, and frustrated customers.

OTEL gives you:
๐Ÿ”น Faster debugging
๐Ÿ”น Clearer system behavior
๐Ÿ”น Better SLAs
๐Ÿ”น Happier teams and users