
Can you trace every single request end-to-end in your system right now?
I had a really interesting conversation with a friend this week that left me thinking about something we all struggle with in complex systems: observability.
Most teams still rely on logs, counters, and P95 chartsโฆ and hope for the best.
But in modern, distributed architectures, that simply isnโt enough.
To illustrate, think about something as common as an email processing pipeline, and this applies far beyond email:
๐๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐น ๐ธ๐ฐ๐ณ๐ฌ๐ง๐ญ๐ฐ๐ธ๐ด ๐ข๐ณ๐ฆ ๐ฃ๐ญ๐ข๐ค๐ฌ ๐ฃ๐ฐ๐น๐ฆ๐ด ๐ธ๐ช๐ต๐ฉ๐ฐ๐ถ๐ต ๐ณ๐ฆ๐ข๐ญ ๐ต๐ณ๐ข๐ค๐ช๐ฏ๐จ
ย ย โข an ingestion layer
ย ย โข parsers and normalizers
ย ย โข multiple ML or threat-detection services
ย ย โข a rules or compliance engine
ย ย โข delivery or downstream queue
ย ย โข logging + analytics
Thatโs 5-10+ microservices, all with their own logs, metrics, and failure modes.
๐๐ฐ ๐ธ๐ฉ๐ฆ๐ฏ ๐ด๐ฐ๐ฎ๐ฆ๐ต๐ฉ๐ช๐ฏ๐จ ๐จ๐ฐ๐ฆ๐ด ๐ธ๐ณ๐ฐ๐ฏ๐จ, ๐ญ๐ฆ๐ข๐ฅ๐ฆ๐ณ๐ด ๐ฐ๐ง๐ต๐ฆ๐ฏ ๐ฉ๐ฆ๐ข๐ณ ๐ฒ๐ถ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด ๐ญ๐ช๐ฌ๐ฆ:
โWhy did this request take 3 seconds instead of 300 ms?โ
โWhich service slowed it down?โ
โDid it get stuck? Did it fail quietly? Where?โ
๐๐ณ๐ข๐ฅ๐ช๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐ฎ๐ฐ๐ฏ๐ช๐ต๐ฐ๐ณ๐ช๐ฏ๐จ ๐ฐ๐ง๐ง๐ฆ๐ณ๐ด ๐ฐ๐ฏ๐ญ๐บ ๐ฉ๐ช๐จ๐ฉ-๐ญ๐ฆ๐ท๐ฆ๐ญ ๐ด๐ช๐จ๐ฏ๐ข๐ญ๐ด:
ย ย โข P95 latency
ย ย โข Error counts
ย ย โข CPU/Memory graphs
Helpful, but not enough to understand what happened to one specific request as it travels across the system.
๐๐ป๐๐ฒ๐ฟ ๐ข๐ฝ๐ฒ๐ป๐ง๐ฒ๐น๐ฒ๐บ๐ฒ๐๐ฟ๐, ๐๐ต๐ฒ ๐บ๐ถ๐๐๐ถ๐ป๐ด ๐น๐ถ๐ป๐ธ
During that conversation with my friend, we kept coming back to one insight: Engineering teams spend huge amounts of time reinventing ad-hoc tracing just to answer basic questions.
๐ข๐ฝ๐ฒ๐ป๐ง๐ฒ๐น๐ฒ๐บ๐ฒ๐๐ฟ๐ (๐ข๐ง๐๐) ๐ฒ๐น๐ถ๐บ๐ถ๐ป๐ฎ๐๐ฒ๐ ๐ฎ๐น๐น ๐ผ๐ณ ๐๐ต๐ฎ๐.
โ End-to-end distributed tracing
A single Trace ID follows a request across every microservice, queue, and function.
โ Automatic instrumentation
It works across languages (Go, Python, Node.js, Javaโฆ) and supports HTTP, gRPC, message brokers, DB calls, cloud services, and more.
โ Built-in correlation
Traces, logs, and metrics are tied together automatically.
You no longer have to manually match timestamps or grep logs at 3 AM.
โ Vendor-neutral observability
Send your telemetry anywhere: Grafana Tempo, Jaeger, Datadog, New Relic, Elastic, etc.
๐ก ๐๐ฉ๐บ ๐ต๐ฉ๐ช๐ด ๐ฎ๐ข๐ต๐ต๐ฆ๐ณ๐ด ๐ช๐ฏ ๐ข๐ฏ๐บ ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐น ๐ข๐ณ๐ค๐ฉ๐ช๐ต๐ฆ๐ค๐ต๐ถ๐ณ๐ฆ
Whether youโre building:
ย ย โข an email ingestion/scanning pipeline
ย ย โข a payment processing system
ย ย โข a multi-service API backend
ย ย โข a real-time data processing platform
โฆyou need visibility into every hop of every request.
Without it, you get blind spots, long MTTR, and frustrated customers.
OTEL gives you:
๐น Faster debugging
๐น Clearer system behavior
๐น Better SLAs
๐น Happier teams and users